\(\int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [696]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 151 \[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {6 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {10 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

[Out]

2/7*B*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/5*A*sin(d*x+c)/d/sec(d*x+c)^(3/2)+10/21*B*sin(d*x+c)/d/sec(d*x+c)^(1/2)+
6/5*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*s
ec(d*x+c)^(1/2)/d+10/21*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)
)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3317, 3872, 3854, 3856, 2720, 2719} \[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {10 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d} \]

[In]

Int[(A + B*Cos[c + d*x])/Sec[c + d*x]^(5/2),x]

[Out]

(6*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (10*B*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*B*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*A*Sin[c + d*x
])/(5*d*Sec[c + d*x]^(3/2)) + (10*B*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+A \sec (c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx \\ & = A \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx+B \int \frac {1}{\sec ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} (3 A) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{7} (5 B) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{21} (5 B) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (3 A \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {6 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {1}{21} \left (5 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {6 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {10 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 B \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {10 B \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.56 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.66 \[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (252 A \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+100 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(65 B+42 A \cos (c+d x)+15 B \cos (2 (c+d x))) \sin (2 (c+d x))\right )}{210 d} \]

[In]

Integrate[(A + B*Cos[c + d*x])/Sec[c + d*x]^(5/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(252*A*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 100*B*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2] + (65*B + 42*A*Cos[c + d*x] + 15*B*Cos[2*(c + d*x)])*Sin[2*(c + d*x)]))/(210*d)

Maple [A] (verified)

Time = 9.77 (sec) , antiderivative size = 290, normalized size of antiderivative = 1.92

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-168 A -360 B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (168 A +280 B \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-42 A -80 B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+25 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(290\)
parts \(-\frac {2 A \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 B \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (48 \left (\cos ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-120 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+128 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-72 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(403\)

[In]

int((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+
(-168*A-360*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(168*A+280*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(
-42*A-80*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+25*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/
2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.03 \[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {-25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 25 i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} A {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} A {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (15 \, B \cos \left (d x + c\right )^{3} + 21 \, A \cos \left (d x + c\right )^{2} + 25 \, B \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \]

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/105*(-25*I*sqrt(2)*B*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 25*I*sqrt(2)*B*weierstrassP
Inverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 63*I*sqrt(2)*A*weierstrassZeta(-4, 0, weierstrassPInverse(-4,
0, cos(d*x + c) + I*sin(d*x + c))) - 63*I*sqrt(2)*A*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x
+ c) - I*sin(d*x + c))) + 2*(15*B*cos(d*x + c)^3 + 21*A*cos(d*x + c)^2 + 25*B*cos(d*x + c))*sin(d*x + c)/sqrt(
cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)**(5/2),x)

[Out]

Integral((A + B*cos(c + d*x))/sec(c + d*x)**(5/2), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/sec(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/sec(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((A + B*cos(c + d*x))/(1/cos(c + d*x))^(5/2),x)

[Out]

int((A + B*cos(c + d*x))/(1/cos(c + d*x))^(5/2), x)